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On resolving the multiplicity of arbitrary tensor products of the 
U(N) groups 

W H Klinktf and T Ton-Thatf 
+ Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA 
i Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA 

Received 2 February 1988 

Abstract. Representations of U(  N )  are realised as right translations on holomorphic Hilbert 
(Bargmann) spaces of n x N complex variables. r-fold tensor product spaces of irreducible 
representations of U (  N )  are shown to be isomorphic to subspaces of the holomorphic 
Hilbert spaces. Maps are exhibited which carry an irreducible representation of U ( N )  
into these subspaces. The algebra of operators commuting with these maps is constructed 
and it is shown how eigenvalues of certain of these operators can be used to resolve the 
multiplicity. Several examples from U(3)  are explicitly worked out. 

1. Introduction 

One of the outstanding problems in the representation theory of compact groups is 
the multiplicity problem. In decomposing tensor products of representations of a 
group, the same irreducible representation may appear more than once; the problem 
is to find a canonical way of treating the equivalent representations that occur in this 
decomposition. Biedenharn and his co-workers have analysed this problem for the 
unitary groups from several different points of view (Moshinsky 1963, Brody et a1 1965, 
Louck 1970 and references therein). One possibility is to make use of tensor operators; 
such an approach has recently been used in conjunction with holomorphic Hilbert 
(Bargmann) spaces of the type that will be used in this paper (Le Blanc and Rowe 
1985, 1986, Le Blanc and Hecht 1987). Another possibility is to embed the tensor 
product space in a much larger space which provides a way of breaking the multiplicity 
(Biedenharn and Flath 1984). In these papers the tensor product space is usually a 
twofold tensor product. 

In this paper we will give a general procedure for decomposing r-fold tensor 
products of irreducible representations of U( N)  by exhibiting a general class of Casimir 
operators that commute with the U ( N )  action on the tensor product space. The 
eigenvalues of these operators can then be used to break the multiplicity. The main 
tools needed to carry out this analysis are a Fock space in n x N complex variables 
which is a carrier space for the tensor products, a Frobenius reciprocity type theorem 
proved by Klink and Ton-That (1988a) which can be used to bound and eventually 
to compute the multiplicity, and the theory of dual pairs (Moshinsky and Quesne 1970, 
Howe 1985), which is used to construct the Casimir operators. Our work follows in 
the spirit of Zelobenko (1970) and in particular we generalise his notion of cycles for 
Casimir operators. 
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The irreducible representations of U( N )  are labelled by N non-negative integers 
( m )  = (m,, . . . , m N ) .  In this paper we generalise the results of Klink and Ton-That 
(1988a), where the tensor products of only the simplest representations of the form 
(m, 0, . . . , 0) were considered; here we will deal with r-fold tensor products of arbitrary 
irreducible representations of U ( N ) .  Because we will rely heavily on the results of 
Klink and Ton-That (1988a) these results will 6e reviewed in 0 2. 

Section 3 makes use of the notion of dual pairs to exhibit an algebra of operators 
that commute with the U ( N )  action on the tensor product space. Theorem 3.1 gives 
the explicit form of this algebra of operators, while proposition 3.5 shows that these 
operators are Hermitian; the eigenvalues of elements of this algebra can then be used 
to resolve the multiplicity. This is shown explicitly in 0 4 with examples of representa- 
tions of U(3). In particular we show that the multiplicity occurring in the tensor 
product of the eight-dimensional representation with itself can be resolved with the 
eigenvalues of a Casimir operator, rather than with the symmetric and antisymmetric 
representations of the permutation group on two letters, as is usually done. 

2. The general setup for tensor product decompositions 

Let G denote the gentral linear group GL( N, C). In general, a concrete realisation of 
a finite-dimensional irreducible representation of G can be obtained in the following 
fashion. If ( m )  = ( m , ,  . . . , m N )  is an N-tuple of integers which satisfy the dominant 
condition m, 5 m2 2. . . s  mN 2 0, and if B denotes the subgroup of lower triangular 
matrices of G, then we define a holomorphic character 7 ~ ' " ' )  : B + C* by setting 7~("')( b) = 
b r t . .  . b",",. Let V'"') denote the complex vector space of all polynomial functions 
f :  C N x  + C which satisfy the covariant condition f( bZ) = 7 ~ ( " ' ) (  b)f(Z)  for all (b, Z) 
belonging to B x C N x N .  Let R'"') denote the holomorphically induced representation 
of G on V'"') defined by [R '" ' ' (g ) f l (Z)  = f ( Z g ) ,  g E G; then according to the Borel-Weil 
theorem R") is irreducible and its highest weight is indexed by (m) which is called 
the signature of the representation R'"'), Moreover, if we restrict this representation 
to the unitary group U(N) ,  it remains irreducible. Finally, if we equip V'"') with the 
'differentiation' inner product - 

( f; f = f( D If( 2 1 I z =o (2.1) 
where f( 0) denotes the differential operator obtained by replacing ZIJ by the partial 
derivative a/aZIJ (1 d i, j S N ) ,  then the representation of U( N )  on V'"') is unitary (cf 
Klink and Ton-That 1988a). 

Next we consider tensor products of r irreducible representations of G with 
signatures (M(l)) ,  . . . , (M(r j ) ,  respectively, where each label (M'l)) is an N-tuple of 
integers ( M , ,  , . . . , M , ,  ), 1 d i G r. We discard those M,,  1 s i d r, 1 sj S N which are 
equal to zero, and relabel the indices so that they form an n-tuple of integers of the 
form ( M i ,  . .  ., M,,,  M p , + l , .  . . , M,, Mp2+i,. .., M,,), where M1, .  . . , M,, are the p ,  
non-zero elements of ( M ( , ) ) ,  and M,,,, . . . M ,  are the p z  non-zero elements of ( M t 2 ) ) ,  
etc, such that the sum p l + .  . . + p ,  = n. Let C n x N  denote the complex vector space of 
all n x N matrices. If Z = (Zv) is an element of C n x N ,  we let denote its conjugate 
and write Z,J = X ,  + m y J  ; 1 d id n, 1 s j  s N. If dX, (respectively d Y,,) denotes 
the Lebesque measure on R we let d Z  =Il dX, dXJ denote the Lebesque product 
measure 1 s i s n, 1 s j s N on R'". Define a Gaussian measure on C n x N  by 

d p ( Z )  = T - " ' ~  exp[-Tr(Zz')] d Z  
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where Tr denotes the trace of a matrix. A mapping f : C n x '  -C is a holomorphic 
square-integrable function if it is holomorphic on the entire domain C n X k  and if 

It is obvious that the holomorphic square-integrable functions form a complex vector 
space; in fact, they form a Hilbert space with the inner product 

It is easy to verify that this inner product actually coincides with the 'differentiation' 
inner product (2.1) if we replace polynomials by entire series expansions in 2,. Let 
9= 9 ( C n x " )  denote this Fock space. 

If D, denotes the group of all complex diagonal invertible matrices of order ( n )  
and if ( M )  = ( M , ,  . . . , M p i , .  . . , M,, )  is the n-tuple of positive integers we define a 
holomorphic character T ' ~ ) :  D, + C* by 

r dI l  1 

A polynomial function p : C n x h '  + C is said to transform covariantly with respect to 
T ( M )  if 

p ( d 2 )  = ~ ' ' ~ ' ( d ) p ( Z )  V ( ~ , Z ) E D , , X C " " ~ .  

It is obvious that the polynomial functions which transform covariantly with respect 
to T ' ~ '  form a subspace of 9. We will denote this subspace by 9'M).  Let R ' M '  denote 
the representation of G on 9"') defined by [ R ' M ' ( g ) p ] ( Z )  = p ( Z g ) ,  ( V ( Z ,  g )  E C n x N  x 
G, p E P'')). In corollary 2.9 of Wink and Ton-That (1988a) we have proved the 
following Frobenius reciprocity type theorem. 

Theorem 2.1. ( a )  If n s N then the frequency of occurrence of the irreducible rep- 
resentation of G with signature ( m , ,  m , ,  . . . , m N )  in $ P ' M )  is equal to the dimension 
of the weight space ( M I ,  . . . , M,,, 0 , .  . . , 0) in the representation (m,, . . . , m N )  of G. 

( b )  If n > N then the frequency of occurrence of the irreducible representation of 
G with signature ( m , ,  . . . , mk) in 2Pp 'M'  is equal to the dimension of the weight space 
(MI ,  . . . , M,) in the representation V"13 mb30,  ,') of G. 

Using the Gelfand-Zetlin basis for V"I9 m , '  we see that theorem 2.1 allows us to 
compute the multiplicity of a representation with signature ( m , ,  . . . , m N )  in 9(M) .  

Set G'=GL(n, C); then G' acts on C n x N  by left multiplication, and this action 
induces an action, denoted by L, of G' in 9: 

[J%')fl(Z) = f ( ( g ' ) - ' Z )  V ( Z , ~ ' ) E C " ~ ~ X G '  Vf E 9. 

We say that G and G' are dual (cf Moshinsky and Quesne 1970, Howe 1985). In 
general, P ( M '  is not invariant under the left action L of G', but if we set (MI = 
MI +. . .+ M,, and define $PIM'  to be the subspace of 9 which consists of all 
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homogeneous polynomial of degree I M ( ,  i.e. f~ PIM' if and only if f ( A Z )  = AIMlf(Z) 
for all A E C, then ? ? I M 1  is invariant under both actions R and L. We define the isorypic 
componenr of the G module V"I, m,' in 9 to be the sum of all G submodules in 9 
which are equivalent to V"I. 3 m c J .  In  corollary 2.14 of Klink and Ton-That (1988a) 
we proved the following theorem. 

Theorem 2.2. If Pi'v' contains a submodule isomorphic to V""' then the isotypic 
component $(Vim))  is contained in 

Now G' contains the subgroup K' = GL(p, , C) x . . . x GL(p,, C) which consists of all 
elements of the form 

(: e . .  O )  k: 
k :  E GL( p , ,  C) ,  1 s i 6 r. 

If Bp, denotes the lower triangular (Borel) subgroup of GL(p,, C) we let H '  u ' ( C " x " )  = 
H i M '  denote the subspace of giM'  which consists of all polynomial functions f which 
satisfy the covariant condition 

f /b. ,  o \  \ 

where bJJ (1 cj s n )  denotes the j t h  diagonal entry of the matrix 

By an argument similar to the one used in the proof of theorem 2.7 of Mink and  
Ton-That (1988a) we have the following theorem. 

Theorem 2.3. If V""~~J' = V("ltsMi2.. ' denote irreducible representations of G then the 
Kronecker tensor product V'Mill'O. . .O V'Mc,i' is isomorphic to the G module H'''. 

From theorems 2.1, 2.2, and 2.3 we see that the theory of dual pairs and the G 
submodules ? ? ' M )  and PIM' will play an  important role in the decomposition of the 
tensor product V''[~~'O.. .O V ' M ~ ~ ~ ' .  I t  should also be pointed out that theorem 2.1 
gives an  upper bound for the multiplicity of a n  irreducible representation of G occurring 
in the tensor product. 

3. The explicit decomposition of the tensor product 

We will now give a procedure for explicitly decomposing the tensor product (or  
equivalently the G module H I M ' )  which includes the crucial step of multiplicity 
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breaking. For this we let L ,  (respectively RrT) denote the infinitesimal operators of L 
(respectively R )  corresponding to the standard basis e,, (respectively e r * )  of the Lie 
algebra CnX"  (respectively C N x N )  of G' (respectively G); then 

Amongst these infinitesimal operators L, we have the particular operators LlpJp, where 
p = p ,  , . . . , p r ,  which correspond to the infinitesimal operators of the subgroups 
G L ( p , ,  C), 1 s i s  r, of G'. We have now a very simple characterisation of the G module 

Indeed, it is easy to verify that HiM '  consists of polynomial functions in P'M' 
which are simultaneously annihilated by all lowering operators of the form 

Lwp with i, < j ,  and all p = p , ,  p z ,  . . , , p , .  (3.2) 

Condition (3.2) is just the infinitesimal version of the Borel condition (2.3). Note that 
in (3.1) for convenience we let L,, correspond to the standard basis er, so that the Borel 
condition corresponds to (3.2) with i,, < j ,  instead of the familiar condition i, > j,. 

Now we assume that the number of times a representation R'") of G occurs in 
HiM'  is known (this is the Clebsch-Gordan series problem; there are a number of 
ways of obtaining a closed-form formula for this multiplicity (see Kostant 1959, 
Steinberg 1961, Koike 1988)). Actually, in our procedure of multiplicity breaking, we 
will show how to derive this multiplicity for each concrete example, which is a very 
interesting fact, since the closed-form formulae for multiplicity are in general imprac- 
tical if not impossible to apply when the order of the group G is large. In contrast, 
to compute the multiplicity of R'" in using theorem 2.1 is a straightforward 
procedure which involves only the Gelfand-Zetlin tableaux. And, as we shall see, the 
multiplicity of R'"') in PiM' together with projection operators LlpJp of (3.2) lead us 
immediately to the multiplicity of R"' in H'M' .  

Now the infinitesimal operators L,,, 1 s i, j s n, in (3.1) form a basis for the Lie 
algebra (of the group G') with commutation relations 

[Li,, L u L  1 = 6 j u L i "  - 6 , L L u j  1 s i ,  j ,  U, U < n. 

These basis elements generate a universal enveloping algebra Du of right invariant 
differential operators which also acts on 9. Moreover, by the Poincari-Birkoff-Witt 
theorem the ordered monomials in L ,  form a basis for the algebra Du. 

Now suppose the G module (R'"'', Vim)) occurs in PP(M) with multiplicity p. Then 
from the theory of reductive dual pairs (Moshinsky and  Quesne 1970, Howe 1985) 
and  from a consequence of Burnside's theorem (cf Dixmier 1974) there exist p linearly 
independent elements in OU which form a basis for the vector space Hom,( V'"', Piu') 
of all intertwining operators from V'"') to PiM'. In a forthcoming paper we will give 
a systematic procedure for obtaining these p intertwining maps in concrete examples. 
In fact, since the algebra Du consists of right-invariant differential operators to simplify 
our exposition it suffices to consider the highest-weight vector hi:: of Vi"; then it 
follows that we can choose p elements p , ( L , ) ,  . . . , p , ( L , )  of Du such that p l ( L q ) h ~ ~ ~ ,  
1 G 1 s p, are linearly independent highest-weight vectors of the p copies of the G 
module isomorphic to V'" which are contained in P""'. Now to obtain an  orthogonal 
direct sum decomposition of $( Vi") n H i M ' ,  the intersection of the isotypic com- 
ponent of V'"') with H i M ) ,  we must find operators in OU that commute with the action 
of the subgroup K' = GL(p,, C) x . . . x G L ( p , ,  C) (or, equivalently, that commute with 
the operators LlpJp in (3.2) but without the condition i, < j,), and that decompose 
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'canonically' $( V'")n H t M '  into distinct eigenspaces. For this, let WL',:M) denote 
the vector space spanned by p l (  LG)hk t i  and let ker',",k'M' denote its projection in H ' M ' ,  
i.e. kerL',i(M' is the common kernel subspace in W ~ ~ ~ ' " '  of all the operators L,plp in 
(3.2). We will find operators in % which commute with the operators L,plp and which 
decompose keri',; M' into distinct one-dimensional eigenspaces. For this, let us concen- 
trate on the action of K' and its right dual action on 9. Let Z be an element of C n x N  
and write Z in block form as 

where Z, is a pI x N matrix, 1 i s  r. 

( k L  . , 

Its dual action is therefore 

According to the theory of dual pairs 

The action of K' on 2 is simply of the form 

for ( k l , .  . . , k:)E K'. 

for all (g , ,  . . . , gr) E G x x G. 0 
I 

our task is to find operators in Du that commute 
with the action of K', or equivalently, with the action of the diagonal subgroup (g, . . . , g) 
of $3x.: .xq.  Set 

I 

p ,  a 
Rfb' = 1 6 a , p s N  (3.3) 

and let R ' p f )  denote the matrix (Rfb'). 
Let us write the matrix [ L]  = ( Lij) ,  1 s i, j s n, in block form as 

(3.4) 
[Llrl * * . [Lln 

where each [ L ] , ,  block is a p ,  x p v  matrix 1 d U ,  U s r. We now have the main theorem 
of this paper. 

Theorem 3.1. In the universal enveloping algebra Du the elements of the form 

Tr(r~l.I.,[~l.,.,. * .  [Lluqu,) 1 S u j s r ,  l < j < q  (3 .5)  
where q is a positive integer and Tr denotes the trace of a matrix, generate a subalgebra 
of differential operators that commute with the action of the subgroup K'= 
GL(p,,  C) x . . . x GL(p,C) on S(C"""). 

ProoJ: Let 8' denote the Lie algebra spanned by the basis elements L,, 1 d i, j S  n. 
Then each element X in 8' can be written uniquely as 

n x = c X k L ,  
i , j = l  
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and so X can be identified with the matrix x = ( x ~ ) .  Similarly we can consider elements 
of the dual (a')* of a' as n x n matrices. Let S denote the symmetric algebra of all 
polynomial functions on (a')*. Then a' can be considered as the set of all polynomials 
of first degree (linear forms) on (a')* via the pairing x(5) = Tr(x(), for all (x, 5) in 
8' x (a')*. Since the representation x + gxg-I, g E G', is contragredient to the rep- 
resentation & + g-'(g we can define the coadjoint representation T of G' in S by the 
equation 

[ T(g)pl ( t )  =P(g-'&) g ' E  G, p E S .  (3.6) 
An element p E S is said to be K' invariant if T (  k )  p = y for all k E K'. 

We have now the canonical isomorphism CP of S onto % (cf Dixmier 1974, ch 3 )  
defined as follows. 

Let p be an element of S ;  then p can be expressed uniquely as 

where the coefficients all,,, are symmetric functions, i.e. arU,, , ,~, , , ,  lyis 
~~ - - all,,, 

for all permutations U E  G s  and for all integers s less than or equal to a fixed integer 
d. Now CP: S + 021 is defined by 

@(P) = c a l ~ , . l ~  I s , J s L I ~ I l  ' ' '  'IJq* 
r s d  

An element U E 021 is said to be Casimir K' idar iant  if it commutes with the action of 
K' on 9, or equivalently, if [U, L,pJp] = 0 for all Since the LIpJp generate the Lie 
algebra of K' it is also equivalent to say that U is K' invariant if and only if U belongs 
to the centre of the universal enveloping algebra of K'. It is well known (see Dixmier 
1974, ch 2) that the canonical isomorphism carries the K'-invariant polynomials onto 
the Casimir K'4nvariant differential operators. Thus to show that a differential operator 
of the form (3.5) is K' invariant it sufficies to show that its inverse image under the 
canonical map CP is a K'-invariant polynomial function. For this we partition a matrix 
& E Q ) " ~ "  in the same way as the matrix [L] of (3.4), namely as [ [tIH * "  [5Ilr] 

k =  [ k1 * . .  ] 
5 =  (3.7) 

[ 5 1 r 1  . . . [ t l r r  

where each [5lUv is a pu  x pL matrix, 1 s U, s r. Now let 

k r  

be an element of K', k, E GL(p,,  C) 1 s i s r ;  then the (U, v )  block matrix of k-'&k is 
k;'[t],,k,. Iff  is the inverse image under the the canonical isomorphism CP then f is 
given by 

Now 
f(t) =Tr([51UlU2[51U2U, . . . [tIuqu1). 

[ 7 . 1 ( k ) f l ( t )  =f (k- ' tk)  
= Tr(( k;: [ 51 uI u2k2)( k;! [ 51 UZU,kUJ , . . ( k;q1[51uqul ki:  1) 
= ~ ~ ( ~ ~ ~ ~ 5 1 U , u , ~ & l U , ~ ,  . . . [51uqulkul)  
= T~([SIUIU2[51U2UJ~ . . [ t 1 u q u 1 )  

= f ( 5 ) .  
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This achieves the proof of the theorem. 

Remark 3.2. The differential operators in (3.5) generalise the cycles defined by 
Zelobenko (1970, ch 9, § 63) where a cycle of length q is defined as L j I l 2 . .  . L,q,, , 
1 s ij s n, so that it corresponds to the particular case in our theorem when all the p, 
are equal to 1. 

Proposition 3.3. The differential operators of the form 

Tr(( R‘pl’)dl . . . ( R‘pr’ )d , )  (3.8) 

where the matrices R‘Pc), 1 s i s  r, are defined by (3.3) and where each d,, 1 s j <  r, is 
an integer 3 0 ,  generate the same algebra of K’-invariant differential operators as the 
differential operators defined by (3.5) in theorem 3.1. 

Proof: A general proof of this proposition would involve induction on the degree of 
the differential operators and tedious computations. We elect instead to give a proof 
for a specific case and illustrate through this case the main steps involved in the general 
proof. For this we consider the Fock space 9 ( C n X ” )  where n = p 1 + p z + p 3  so that a 
matrix Z is partitioned in block matrix of the form 

where Z, is a p ,  x N matrix, 1 
and R(P3’, and the corresponding matrix [L] of (3.4) is of the form 

i s  3. Thus we only have three matrices, R ‘ P ~ ’ ,  

[L111 [LIiz [L]i3 

[L131 [ L 1 3 2  [L133 

Now let us consider the differential operator Tr(R‘Pi’R(P2)R(P3)] and show that it can 
be expressed in terms of the differential operators in (3.5). To avoid cumbersome sums 
in the traces of matrices we adopt the Einstein convention of summing over repeated 
indices. It follows that 

where l S i , j ,  k s N ,  l S a S p I ,  l s p ~ p , , a n d  l S y s p 3 .  Nowweobservethat  

where 8)k is a Kronecker delta. Therefore, 
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We note that at this point in the general proof we would use induction on the first 
term of the second member of the last equation since it is of lower degree. Now the 
equations 

imply that the above equation is equal to 

- - P?PIL,, - P,L,nL,p - PILrrvLya + L,,L,,L,, 

=p3pI T r ( [ L I d  -P? T r ( [ L l ~ l [ L l 1 2 )  - p Z  Tr([Ll,,[L13,) 

+ Tr([J5113[L13*[ J51-2,). 

Conversely, it is easy to verify that 

Tr([ LI2J = Tr( RIp2') 

Tr( [ LIZ, [ L] , 2 )  = Tr( R' p:'R'pl ') + p ,  Tr( ') 

Tr([ L] 3[ L], = Tr( R i p )  ' R ' p 3 ' )  + p3 Tr( RIP) ') 

so that 

Tr( [ L] 13[ L],*[ L],,) = Tr( R' ' I 'R '  P?iR' - p 3 p ,  Tr( R'P: ' )  + p 7  Tr( R'  P2'R' 

+ p3p,  Tr( R' p z z )  + p z  Tr[ R' pl 'R(pl '  ) + p 2 p 3  Tr( R' I ) .  

Thus, we have just shown that Tr(R'PIJR'PzIR'Piz) can be expressed as a sum of 
Tr([Ll,,[L132[Ll,,) and  terms of lower degrees, and vice versa. Clearly, a general 
proof can proceed in a similar fashion by showing that Tr((R'piJ)db..  . ( R ' p J ) d , )  can 
be expressed as the sum of a differential operator of the same degree of the form 
Tr([L1,1U2[L]UZU3.. . [LIUqUI)  and  terms of lower degrees which by induction satisfy the 
conclusion of the proposition. Note that in the first step of the induction for the terms 
of degree one we obviously have Tr (R ' "  I )  = Tr([ L],,),  1 < is r. Thus proposition 3.3 
is proved. 

Remark 3.4. It is not difficult to show directly that the differential operators of the 
form Tr ( (R(p l ) ) ' f i . .  . (R 'P2J)d , )  commute with the right action of the diagonal subgroup 
(g, g, . . . , g )  of G x . . . x G, so that theorem 3.1 and proposition 3.3 illustrate indeed 

a dual pair action on' 9(C n x ' 2 . ) .  

- 
To be useful for our programme of multiplicity breaking the commuting operators 
must be Hermitian. We will show this fact by making use of the differentiation inner 
product given by (2.1); this will also illustrate the advantage of the differentiation 
inner product over the integration inner product ( 2 . 2 ) .  

Proposition 3.5. The differential operators of the form Tr( (R 'p lz )d l  . t .  

Hermitian. 
are 
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Boo$ Recall that, using the Einstein convention, an operator RIp(',  1 
defined by 

1, j C N, is 

In the appendix we show that, using the differentiation inner product, (R/,Pl))* = R:,Pc' 
for all 1, j = 1 , .  . . , N. Recall that R(p l )  denotes the matrix ( R p ) ) ,  then it follows 
immediately that 
[Tr((R'pl')dl . . . (R'Pz ' )dr) ]*=Tr((R(Pl ' )d l  . . . (R(p, ' )d, )*  

From (3.3) we see that two matrix entries R$' and R 3 '  with i # j commute with each 
other since they involve different sets of variables. From this it follows immediately that 

and hence (3.9) implies that Tr((R'pl')dl . . . (R 'p , ' )d , )  is Hermitian. 

Corollary 3.6. The differential operators of the form Tr([L],,,, . . . [LlUquI) as given by 
(3.5) are Hermitian. 

Proof: The proof is an immediate consequence of propositions 3.3 and 3.5. 

For computational purposes the differential operators Tr([L],,,, . . . [LlUquI)  are more 
convenient than the differential operators Tr((R'Pl ) )d l  . . . ( R ( p r ' ) d r ) .  This fact will be 
illustrated in the next section where we will show how to resolve the multiplicity in 
two examples using the procedure just described. 

=Tr((R'pr'*)d,. . . ( R ' p l ' * ) d ~ ) = T r ( ( R ( p , ) ) d , .  . . ( R ( P I ) ) ~ I ) .  (3.9) 

Tr((R'Pr')dr.. . (R'pl')dl)=Tr((R(pl))dl . . , ( R ' p v ' ) d r )  

4. Examples 

4.1. Multiplicity breaking of the irreducible representation of GL(3, C) with signature 
(3, 2, 1 )  in the tensor product V(2,1so) 0 Vf22',o) 
This is the well known tensor product of two eight-dimensional representations of 
U(3) in which the eight-dimensional representation of U(3) occurs twice. We will 
show that our procedure will also allow us to rederive this multiplicity. According to 
our programme we consider the Fock space .F(@4x3) which contains the GL(3,C)  

9fj(2,19291) (C4x3).  This module contains in turn the module H(23'9291' (C4x3) 
which by theorem 2.3 is isomorphic to the tensor product V'23'30'0 V'2s'30'. The sub- 
module H ( 2 , ' , 2 , ' )  consists of polynomial functions in 9fj'2*1*2*'' which are simultaneously 
annihilated by the lowering operators 

3 3 a a 
L34= c z3-. 

I = 1  az,, L 1 2 =  c z1,- az,, 
According to theorem 2 . l ( b )  the number of times that V(33231' occurs in ?P(29's2-1) is 
equal to the dimension of the weight space ( 2 , 1 , 2 , 1 )  in V(392*',0'. To find this dimensiori 
we consider the Gelfand-Zetlin tableau 

/ 3  2 1 o \  

\ 



Multiplicity of arbitrary tensor products of the U (  N )  groups 3887 

Then according to theorem 3, 0 67, of Zelobenko (1970) a basis element labelled by 
the tableau above has weight (2, 1,2,  1 )  if and only if 

k = 2  j ,  + j z  = 3 i l  + i z+  i3 = 5 

together with the betweeness conditions of a Gelfand-Zetlin tableau. This leads to 
the four possible tableaux 

[3 3 1 2  l o o ]  ( 3  3 ;  2 1 0 0 )  

[ 3 ; 1 ; 1 0 )  [ 2 1 2 ; 1 0 ]  

2 2 

2 2 

H~~~~ v(3,2,1) occurs in g C L l . 2 . l )  with multiplicity 4. Set fo(Z) = A~(Z)A~~(Z)A~:: (Z)  
where the A are principal minors of 2 E C4x3.  There exist four linearly independent 
intertwining operators, for example, Lzl Lf2L43, L31L32L43, L31L42 and L32L41, that 
send the GL(3, C )  module V'33231' into the GL(3, C) module P(231,231), Here L, is given 
by 

a 3 
L ,=  z,,- 1 s i, j 4. 

/ = I  a q  
According to the scheme described in the previous section the matrix 

where 

L2l L 2 2  

We use the Casimir operator 

[ L]22 = (L33 L34). 
L43 L44 

L,,L,kLk,L,,, 1 si, k s 2 ,  3 s  r, s ~ 4 ,  using the Einstein convention. The space 
w(3H5;1"2'1'2'1) is spanned by 

fl = L21 L:2 L43f0  

f 3  = L31 L42f0  and f 4 =  L32L41f0 .  

f 2  = L31 L 3 2 L 4 3 f 0  

The operators L I Z  and L34 then project W:H:'1"2.1,23'i Onto kerEl:)(2.1.2,') . The application 
of the operators L I Z  and Lj4 to a general vector in W(3;:1)'2,1,2-1) of the form Z:=l ad, 
cr, E C, leads to a system of linear equations which in turn implies that kerr;:1'"*'*2,1i 
has dimension 2; hence, the multiplicity of (3 ,2,  1 )  in V'23'so'@ V'2.1*o' is indeed 2. The 
Casimir operator C acting on k e r ~ ~ ~ " 2 3 1 - 2 ~ 1 '  has two distinct eigenvalues A ,  = 24 and 
Az = 42 with corresponding eigenvectors 

hl  =f1+ 2fi - 2f3 h2=f,+2f,+f,-3f4 
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which are obviously orthogonal since A ,  # A 2  and C is Hermitian. In  conclusion, the 
two intertwining maps that send V'3*2," into two orthogonal (equivalent) submodules 

are of Hi2.1.2."  

PI = & I  Li2L33 i- 2L31 L32L43 - 2L3 I L42 

and 

P2 = L2 I Lj2L43 + 2L3 I L32L.43 + L3, L42 - 3 L32L41 
which are obtained from the forms of h ,  and h2 in terms of the Lt,. 

4.2. Multiplicity breaking of the irreducible representation of GL(3, @) with signature 
(3, 2, 1 )  in the threefold tensor product V"*o,o' 0 V".'"' 0 V'2.f."' 

For this example the Fock space is $(esx3) ( p ,  = 1, p2 = p 3  = 2 and n = 5) which contain 
the GL(3, C) module 911,131,2,1' (esx3). The submodule H",'3'3',1' (e'"') which is 
isomorphic to Vi'.o.ol@ V('.',o'@ V(2.1.0' consists of polynomial functions in P"~'~' ,2~')  
that are simultaneously annihilated by the lowering operators 

a 3 a 3 

LZ3 = 1 Z2,-  and L,5 = 1 Z4/-. 
/ = I  aZ3, f = 1  az,, 

To find the multiplicity of V'3 we consider the Gelfand-Zetlin tableau in % ' ( ' x 1 3 ' 3 2 . ' )  

3 2 1 0 0  

Then a basis element labelled by this tableau has weight (1, 1, 1 ,2 ,  1J if and only if 
1 = 1, k,  + k, = 2, j ,  + j 2 +  j 3  = 3, and i, + i2+ i3 = 5, together with the betweeness condi- 
tions of a Gelfand-Zetlin tableau. This leads to the eight possible tableaux 

1 

3 2 1 0 0  3 2 1 0 0  3 2 1 0 0  

0 0 
1 1 0 

2 1 0 0  2 1 0  

[ 3 2 1 1 1 0 0  2 0  [ 3 3 2 0 0 0 0 0 ]  2 0  

1 1 
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with multiplicity 8. Note that it is important to 
exhibit the eight tableaux above because they allow us to get eight linearly independent 
intertwining maps that send V'3,'31 ' into ?'l.','.'," , namely 

Hence V'3~2.l 1 occurs in  p l , l ~ l , 2 , I l  

L:l Lsz L 3 1 L 4 2 L 4 3 L 5 1  L3I L44L42L53 

L21 L32L41 L53 and L21L31 La&. 

L31L41L43Ls2 L? I L32L42L43 Ls I L21  L ? 2  L41 L42 L53  

Set fo= h:::' and let f;, 1 s  i S 8 ,  be the images of f o  under the intertwining maps 
above. Then the vector space W:2;1"13',13221' is spanned by the f ; .  The equations 

lead to a system of linear equations which in turn implies that ker2:.'"'%13',2.1' has 
dimension 3; hence, the multiplicity of (3 ,  2, 1 )  in V"3".o'0 V".'.o'O V''.'." is 3. The 
Casimir operator C = LiXLskLk,Lri ; 2 s i, k 5, acting on ker:;~l"'313',2.1' has 
three distinct eigenvalues A I  = 9,  A 2  = 29 and A 3  = 35. The corresponding mutually 
orthogonal eigenvectors are 

3 , 4 <  r, s 

hi = -6fl - 8 f 2 -  lOf3 +2f4+ 8f5 + 6f6- 2f7 + 3f8 
h2 = 2fl - f 3  + f 4  - 3f6 -f7 - f s  

h3 = -6fi + 4f2 - 213 - 2f4 -4f5 + 14f6 + 2f7 + 3f8. 

Therefore, the three intertwining operators that send V'332.1'  into three (equivalent) 
submodules of H".1-1*2s" are 

PI = -6 GI L52 - 8 L3 1 L L 4 3  L5 i - 1 OL3 1 L41 L42 L5, + 2L3 1 L4i L43L52 + 8 L, i L32L42L43 Ls 1 

+6LzlL32L41L42L53 - 2L21L32L4I L43L53 + 3LllL31L:'LP3 

'2 = 2L:1 LS3 - L31 L41 L42L53 + L31 L41 L43 L S Z  - 3 L Z l  L32L41 L42L53 

- L21L32L41L43L53- L 2 1 L 3 1 L a 2 L 5 3  

p3 = -6 L:l L53  + 4L,l  L42 L43 LS1 - 2 L 2 1  L 4 l  L42 L S 3  - L31 L41 L43 L52 - 4LZl L32L42L43LZl 

+ 14LI L32L42L53 + 2L2l L32L41 L43L5.7 + 3 LZl L31 L:, L,, . 

5. Conclusion 

We have shown how to decompose an  r-rold tensor product of arbitrary irreducible 
representations of the U(  N )  groups, by finding generalised Casimir operators whose 
eigenvalues can be used to resolve the ambiguity occurring when equivalent representa- 
tions appear more than once in the decomposition. The procedure given is computa- 
tionally effective, in that maps are constructed which take an  irreducible representation 
space into the tensor product space, resulting in an orthogonal direct sum decomposi- 
tion of equivalent representations. 

Underlying our procedure is the use of polynomial realisations of all the irreducible 
representations of the U( N )  groups. Such polynomial realisations have the advantage 
of being basis independent; different bases, dictated by physical considerations, result 
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in different sets of polynomials, and the transformation coefficients between the basis 
sets are easily calculated using the differentiation inner product (2.1). The maps that 
take a polynomial from an irreducible representation space to the tensor product space 
may result in polynomials that are quite long and complicated. Our goal is not to find 
closed form expressions for coefficients of physical interest (such as Clebsch-Gordan 
and Racah coefficients) but rather to give well defined procedures that can be adapted 
to the computer. We have shown (Klink and Ton-That 1988b) how to give procedures 
for calculating coefficients of physical interest for the simplest representations of U(  N ) ,  
of the form ( M ,  0, , . . , 0). In the following paragraphs we summarise how those 
procedures are generalised to arbitrary irreducible representations of U( N ) .  

We assume that an r-fold tensor product of representations ( M , ) ,  ( M J ,  . . . , ( M , )  
of U ( N )  is given; the goal is to give an orthogonal direct sum decomposition of the 
r-fold tensor product into irreducible representations of U( N ) .  This is equivalent to 
specifying the maps that take an irreducible representation space labelled by (m) to 
an orthogonal direct sum of copies of (m) in the tensor product space. Our procedure 
begins by arranging the labels ( M , ) ,  ( M J ,  . . . , (M,) as an n-tuple of integers by 
discarding the zero entries in the ( M z ) .  For example, the tensor product of the 
eight-dimensional representation of U(3) with itself, (2, 1 , 0 ) 0 ( 2 ,  1, O ) ,  discussed in 
§ 4.1 goes to ( M )  = (2, 1,2, l), with n = 4. 

We next introduce the Fock space 9 ( C n X N ) ;  the action of U ( N ) c  GL(N,C) on 
f~ 9 i s  given by right translation, namely ( R ( g ) ( f ) ( Z )  = f ( Z g ) ,  g E GL(N, C ) .  Actually 
only a finite-dimensional subspace of 9 ( C n x N )  is needed, namely the subspace P(M) 
of elements of 9 satisfying the covariance condition f ( d Z )  = d r l  . . . dyn f ( Z )  (for 
the definition of d see the paragraph preceding theorem 2.1). From Klink and Ton-That 
(1988a) we can compute the number of times the representation ( m )  of U ( N )  will 
occur in 9""'); it is given by certain Gelfand-Zetlin tableaux, as discussed in theorem 
2.1. The maps which send the polynomial representation space labelled by (m) into 
9'(') are obtained from the dual group GL(n, C), whose (left) action ( L ( g ' ) f ) ( Z )  = 
f ( g ' - ' Z ) ,  g ' E  GL( n, C ) ,  commutes with the previously defined right action. The maps 
are certain polynomials in the Lie algebra generated by I & ( ~ , ~ ) ,  with the number of 
linearly independent maps given by the multiplicity of (m) in 9(M). These results are 
spelled out in more detail in Mink and Ton-That (1988b). 

Thirdly the r-fold tensor product space is shown (theorem 2.3) to be isomorphic 
to a subspace H ' M '  of 9('), defined to be those elements of 9'"') which are annihilated 
by certain elements in the Lie algebra of LGL(n,C) (see equations (2.3) and (3.2)). In 
particular the representation space (m), after being mapped into is projected 
into H ' M ' .  So at this point we have the right number of copies of ( m )  in the tensor 
product space, but not yet as an orthogonal direct sum. 

The main result of this paper has been to construct an algebra of operators out of 
the Lie algebra of LCL(n,C) which commutes with U(N) and leaves the space H''' 
invariant. The operators defined in theorem 3.1 are Hermitian (proposition 3.5) and 
so their eigenvalues can be used to form an orthogonal direct sum of the copies of 
( m )  in H ' M ' .  The algebra of operators generalises the notion of coupling schemes 
used to break the multiplicity in Mink and Ton-That (1988b). 

The procedure outlined in the four steps above is not completely computationally 
effective. It has been shown (Procesi 1976) that a1 the generalised Casimir operators 
can be generated from a finite set; in a succeeding paper we will show how to choose 
this set. Also, we have been somewhat vague on how to construct the maps carrying 
( m )  into 9(M1.  When writing our procedures as instructions for a computer, we will 
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show that the Gelfand tableaux used to calculate the multiplicity can also be used to 
specify the linearly independent maps. Finally it remains to find closed-form 
expressions for the eigenvalues of the generalised Casimir operators, analogous to the 
expressions that Zelobenko (1970) has for the eigenvalues of his Casimir operators. 

Though we have restricted our attention in this paper to the unitary groups, our 
procedure can be used on any groups whose irreducible representations can be realised 
as polynomials. Recently we have found that all the irreducible representations of the 
orthogonal and symplectic groups can be realised as polynomials; we intend to 
investigate the decomposition of tensor products for these groups in a future publi- 
cation. 

Appendix 

In this appendix we will show that the adjoint R ;  of the operator RI, is the operator 
R,). Let us recall that the differentiation inner product is defined on the Fock space 
9( C ”) by the equation 

- 
(Lf’) = f m f ’ m i z = o  

for all f, f’ in 9 and all Z E C n x  ’. Recall that, using the Einstein convention, an  
operator R,, 1 s i, j s N, is defined by R,) = z,,a/aZ,,, where k ranges over an  appropri- 
ate set of indices. Since the algebra 9’(@‘Ixh 1 of all polynomial functions on C f l X y  is 
dense in 3 it follows that we will reach the conclusion RC = RI,  by showing that 

(L R t J f )  = ( R ! l f , f ’ )  for all L ~ ’ E  9’(cnXN). 
I f f  and f’ are linear forms (polynomials of degree one) this is a straightforward 
verification. Therefore, by induction, let us assume the formula true for all 
homogeneous polynomials of degree n, and consider polynomials f and f’ of the form 

f =f& f’=f’lfi 
where .fr and f :  are linear forms and f1 and f; are homogeneous polynomials of degree 
n. Obviously 
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